On Different Model Selection Criteria In A Forward And Backward Regression Hybrid Network
نویسندگان
چکیده
An assessment of the performance hybrid network with different model selection criteria is considered. These criteria are used in an automatic model selection algorithm for constructing a hybrid network of radial and Perceptron hidden units for regression. A forward step builds the full hybrid network; A model selection criterion is used for controlling the network-size and another criterion is used for choosing the appropriate hidden unit for different regions of input space. This is followed by a conservative pruning step using Likelihood Ratio Test, Bayesian or Minimum Description Length, which leads to robust estimators with low variance. The result is a small architecture that performs well on difficult, realistic, benchmark data-sets of high dimensionality and small training size. Best results are obtained by using the Bayesian approach for the model selection.
منابع مشابه
Comparative Approach to the Backward Elimination and for-ward Selection Methods in Modeling the Systematic Risk Based on the ARFIMA-FIGARCH Model
The present study aims to model systematic risk using financial and accounting variables. Accordingly, the data for 174 companies in Tehran Stock Exchange are extracted for the period of 2006 to 2016. First, the systematic risk index is estimated using the ARFIMA-FIGARCH model. Then, based on the research background, 35 affective financial and accounting variables are simultaneously used with t...
متن کاملForward and Backward Selection in Regression Hybrid Network
We introduce a Forward Backward and Model Selection algorithm (FBMS) for constructing a hybrid regression network of radial and perceptron hidden units. The algorithm determines whether a radial or a perceptron unit is required at a given region of input space. Given an error target, the algorithm also determines the number of hidden units. Then the algorithm uses model selection criteria and p...
متن کاملA strong regularization on a hybrid MLP/RBF architecture achieves small bias and small variance error
We introduce a Forward Backward and model selection algorithm for constructing a hybrid network of radial and perceptron hidden units for regression. The algorithm determines if a radial or a perceptron unit is required at a given region of input space. Given an error target, the algorithm also determines the number of hidden units. Then the algorithm uses model selection criteria and prunes un...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملPROVIDING A MODEL FOR THE SUPPLIER SELECTION PROCESS IN THE SUPPLY CHAIN MANAGEMENT WITH HYBRID MODEL OF DECISION MAKING
<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJPRAI
دوره 18 شماره
صفحات -
تاریخ انتشار 2004